Sign In | Join Free | My ecer.jp
China XIAMEN POWERWAY ADVANCED MATERIAL CO., LTD. logo
XIAMEN POWERWAY ADVANCED MATERIAL CO., LTD.
XIAMEN POWERWAY ADVANCED MATERIAL CO., LTD.
Active Member

6 Years

Home > SiC Wafer >

4H Semi-Insulating SiC Substrate With Si Face Cmp Polished, Research Grade,4”Size

XIAMEN POWERWAY ADVANCED MATERIAL CO., LTD.
Contact Now

4H Semi-Insulating SiC Substrate With Si Face Cmp Polished, Research Grade,4”Size

Brand Name : PAM-XIAMEN

Place of Origin : China

MOQ : 1-10,000pcs

Price : By Case

Payment Terms : T/T

Supply Ability : 10,000 wafers/month

Delivery Time : 5-50 working days

name : sic Wafer

Description : Research Grade 4H SEMI Substrate

Grade : Research Grade

Size : 4 inch

keywords : single crystal SiC wafer

application : electronic industry

Contact Now

4H Semi-Insulating SiC Substrate With Si Face Cmp Polished, Research Grade,4”Size

PAM-XIAMEN provides high quality single crystal SiC (Silicon Carbide)waferfor electronic and optoelectronic industry. SiC wafer is a next generation semiconductor materialwith unique electrical properties and excellent thermal properties for high temperature and high power device application. SiC wafer can be supplied in diameter 2~6 inch, both 4H and 6H SiC , N-type , Nitrogen doped , and semi-insulating type available.

Please contact us for more information:

SILICON CARBIDE MATERIAL PROPERTIES

Polytype Single Crystal 4H Single Crystal 6H
Lattice Parameters a=3.076 Å a=3.073 Å
c=10.053 Å c=15.117 Å
Stacking Sequence ABCB ABCACB
Band-gap 3.26 eV 3.03 eV
Density 3.21 · 103 kg/m3 3.21 · 103 kg/m3
Therm. Expansion Coefficient 4-5×10-6/K 4-5×10-6/K
Refraction Index no = 2.719 no = 2.707
ne = 2.777 ne = 2.755
Dielectric Constant 9.6 9.66
Thermal Conductivity 490 W/mK 490 W/mK
Break-Down Electrical Field 2-4 · 108 V/m 2-4 · 108 V/m
Saturation Drift Velocity 2.0 · 105 m/s 2.0 · 105 m/s
Electron Mobility 800 cm2/V·S 400 cm2/V·S
hole Mobility 115 cm2/V·S 90 cm2/V·S
Mohs Hardness ~9 ~9

4H Semi-Insulating SIC Substrate, Research Grade,4”Size

SUBSTRATE PROPERTY S4H-51-SI-PWAM-250 S4H-51-SI-PWAM-330 S4H-51-SI-PWAM-430
Description Research Grade 4H SEMI Substrate
Polytype 4H
Diameter (50.8 ± 0.38) mm
Thickness (250 ± 25) μm (330 ± 25) μm (430 ± 25) μm
Resistivity (RT) >1E5 Ω·cm
Surface Roughness < 0.5 nm (Si-face CMP Epi-ready); <1 nm (C- face Optical polish)
FWHM <50 arcsec
Micropipe Density A+≤1cm-2 A≤10cm-2 B≤30cm-2 C≤50cm-2 D≤100cm-2
Surface Orientation
On axis <0001>± 0.5°
Off axis 3.5° toward <11-20>± 0.5°
Primary flat orientation Parallel {1-100} ± 5°
Primary flat length 16.00 ± 1.70 mm
Secondary flat orientation Si-face:90° cw. from orientation flat ± 5°
C-face:90° ccw. from orientation flat ± 5°
Secondary flat length 8.00 ± 1.70 mm
Surface Finish Single or double face polished
Packaging Single wafer box or multi wafer box
Usable area ≥ 90 %
Edge exclusion 1 mm

sic crystal defects

Most of the defects which were observed in SiC were also observed in other crystalline materials. Like the dislocations, stacking faults (SFs), low angle boundaries (LABs) and twins. Some others appear in materials having the Zing- Blend or the Wurtzite structure, like the IDBs. Micropipes and inclusions from other phases mainly appear in SiC.

Choice of Polytype for Devices

As discussed in Section 4, 4H- and 6H-SiC are the far superior forms of semiconductor device quality SiC commercially available in mass-produced wafer form. Therefore, only 4H- and 6H-SiC device processing methods will be explicitly considered in the rest of this section. It should be noted, however, that most of the processing methods discussed in this section are applicable to other polytypes of SiC, except for the case of a 3C-SiC layer still residing on a silicon substrate, where all processing temperatures need to be kept well below the melting temperature of silicon (~1400°C). It is generally accepted that 4H-SiC’s substantially higher carrier mobility and shallower dopant ionization energies compared to 6H-SiC (Table 5.1) should make it the polytype of choice for most SiC electronic devices, provided that all other device processing,performance, and cost-related issues play out as being roughly equal between the two polytypes. Furthermore, the inherent mobility anisotropy that degrades conduction parallel to the crystallographic c-axis in 6H-SiC particularly favors 4H-SiC for vertical power device configurations (Section the 5.6.4). Because the ionization energy of the p-type acceptor dopants is significantly deeper than for the n-type donors, a much higher conductivity can be obtained for the n-type SiC substrates than for the p-type substrates.


Product Tags:

silicon carbide wafer

      

semi standard wafer

      
Quality 4H Semi-Insulating SiC Substrate With Si Face Cmp Polished, Research Grade,4”Size wholesale

4H Semi-Insulating SiC Substrate With Si Face Cmp Polished, Research Grade,4”Size Images

Inquiry Cart 0
Send your message to this supplier
 
*From:
*To: XIAMEN POWERWAY ADVANCED MATERIAL CO., LTD.
*Subject:
*Message:
Characters Remaining: (0/3000)